US009276990B1

a2z United States Patent (10) Patent No.: US 9,276,990 B1

Urbach (45) Date of Patent: *Mar. 1, 2016
(54) VIRTUAL APPLICATION EXECUTION (58) Field of Classification Search
SYSTEM AND METHOD CPC oo GO9G 5/14; HOA4L 67/02

See application file for complete search history.
(71) Applicant: Julian M. Urbach, Sherman Oaks, CA

(US) (56) References Cited
(72) Inventor: Julian M. Urbach, Sherman Oaks, CA U.S. PATENT DOCUMENTS
(US) 7,107,548 B2* 9/2006 Shafronccooen. 715/826
)) o) 7,142,226 B2* 11/2006 Sakuta et al. ... 345/690
(*) Notice: Subject to any disclaimer, the term of this 7,950,026 Bl1* 572011 Urbach ..ooooovcovvverrre.. 719/329

patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

This patent is subject to a terminal dis-

OTHER PUBLICATIONS

RealVNC: VNC Server Free Edition for Windows; 10 pages;

claimer. archived Mar. 6, 2005; http://web.archive.org/web/
200503060304 12/http://www.realvnc.com/products/free/4.1/
(21) Appl. No.: 13/828,438 winync. html.*
(22) Filed: Mar. 14, 2013 * cited by examiner
Related U.S. Application Data Primary Examiner — Andy Ho

Assistant Examiner — Kimberly Jordan

(63) Continuation of application No. 13/101,567, filed on (74) Attorney, Agent, or Firm — James J. DeCarlo;
May 5, 2011, now Pat. No. 8,402,481, which is 8 Greenberg Traurig, LLP ’

continuation of application No. 11/166,663, filed on

Jun. 23, 2005, now Pat. No. 7,950,026. (57) ABSTRACT
(60) Provisional application No. 60/583,182, filed on Jun. A virtual execution environment for software applications
24, 2004. and other code objects. In one implementation, the present
invention allows for virtual execution of applications by
(51) Int.CL transparently capturing the rendered output of natively
GOG6F 9/44 (2006.01) executed applications, and delivering the output to other pro-
HO4L 29/08 (2006.01) cesses on the same platform or to remote devices in a platform
G09G 5/14 (2006.01) agnostic manner.
(52) US.CL
CPC . H04L 67/02 (2013.01); GO9IG 5/14 (2013.01) 20 Claims, 9 Drawing Sheets
; 126
taskbar, window or icon visible
¢ 128
Scan System Windows in a Threaded Loop //

as Executable Code Object Launches

¢ 130

Test Fach Window on the System
for Expected Window Narwe of the
Executable and Known Process ID

Daes 2 Window March
Criteria Within a Timeout
Period & Is it 2 Root
Applicarion Window?

134

Turn the Window Invisible
and Store Window Handle

136
Transform Window into a Borderless Window & /
Hook into or Sub-Class Window Fvent Loop

J/ 138
|/

Process Manifest for Scripts and Cade that
Overrides Default Behavior of Executable Parent
‘Window

U.S. Patent Mar. 1, 2016 Sheet 1 of 9 US 9,276,990 B1

Application Capture Plug-Tn Triggered from J .
HIML Content Using Standard Objector }—7 Flg.__i
Embedded Tags
¥
HTML Tags for the Plug-Tn Set the Bounds of
the Executable to Be Embedded in the Web {—
Page

Fig. 1A
504 Fig IB

Fig 1C

¥ 106

HTIML Parameters Specify the Name of the J/
Executable to Load, and the URL of the Binary f—
Manifest File

X - Fig. 1A

Is the Execurable
Stored Locally on the
System?

Pl URLs for Packaged Files Containing
the Execurable and All Dependent
Cormnponents from Manifest File

Hie v

Yoo i Download All Necessary Packed Files
- : 1,10 in Rackground Thread
Retrieve File Signarures of the Execatable and /l
Libraries & Compare to Server Side Registry of @
Authorized Applications for Aathentication Authenticate File Signatures of
@, Downloaded Files Using Trusted Server

},12 or Digiral Certificate Signed by Trusted

thenticate Executable by Matching Digiral Lo
Authenticare Executable by Matching Digi Root Authority

Signarures in Manifest File with Trusted Roor -

Authority ‘\
3 118

122

.| Place Filesintoa | /
Local Sub-Folder

v -

Are All Files
Authenticared?

‘
Display L . .
Wa fﬂif} g Use Manifest File or Information in Packaged
Diglog Rox Headers to Build and Populate Sub-Folders Needed
= by Execurable & Modify Registry, if necessary

¥

A
CD

U.S. Patent Mar. 1, 2016 Sheet 2 of 9

Launch Execurable in a Silent Process
Off the Edge of the Screen, with no
taskbar, window or icon visible

¥

Scan System Windows in a Threaded Loop|
as Executable Code Object Launches

¥

Test Fach Window on the System
> for Expected Window Name of the
Executable and Known Process 1D

Does a Window Match
Criteria Within a Timeout
Period & Is it a Root
Application Window?

Turn the Window Invisible]
and Store Window Handle

A

Hook into or Sub-Class Window Event Loop

Transform Window into a Borderless Window & |

A

US 9,276,990 B1

Process Manifest for Scripts and Code that
Overrides Default Behavior of Executable Pavent
Window

U.S. Patent Mar. 1, 2016 Sheet 3 of 9

A
Check Manifest to Determine if Executable Can
Properly Render to an Off-screen Memory Buffer, orj—
if it was launched in a Virtual Off-screen Deskeop

US 9,276,990 B1

140

H

144

J

{
i

(Can Executable
. Rendertoan)
"o Off-screen Buffer?

.| Executable Window and Place
it as a Child Window within the

Remove Border of Root

Plug-In Child Window

Render and Manage Executable’s J/
Off-screen Deskrop Shelt or Draw 7
Context and Rasterize into Memory

f“\

148 - A
\ Use Sub-Classed Event Loop to

.- Propagate User Interaction with B
the Executable]

v 150
I
Render Fmbedded ///

Executable Window Within +—
Sprite Layer

l

When Plug-in Unloaded, Terminate
Hosted Executable Process Before
Plug-In Window is Destroyed

U.S. Patent Mar. 1, 2016 Sheet 4 of 9 US 9,276,990 B1

N3
<
it

Browser Plug-In Already Installed and Running A e

as Background Process that Conmects to System | Browser Piug-In Activared

Wide Browser COM Events, or other external - by Browser as Embedded
interfaces, to Determine When a URI is about Component in HIML
t0 he Loaded into a Browser Instance Page Contains Trigger

=] \

e B

Dioes the URL Maich
Any Entries in a Registry
optionally loaded from a
Remote Server?

Yemor

s
¥

Move Existing Browser Window in /
Front of Other Windows (if needed)
& Caprure Its Screen Contents

Create a New Window, with no taskbar Fg_g; 2
X . . - "
component, matching Dimensions and / -
Contents of the Original Browser Window Fig 2A
and Display It Over Existing Browser Fig. 2B
Window
¥ 210

Hide Old Browser Window and Taskbar foon L~
As the New Browser Window is Fffecrively
Swapped with the Cld Browser Window & s
Taskbar Icon is Made Visihle
¥
Create a Child HYME Window Using
Calls, or an HIML Rendering
Library that Draws Target Web Page

Contents in an Offscreen Boffer \}

U.S. Patent Mar. 1, 2016 Sheet 5 of 9 US 9,276,990 B1

214 Subelass and Kidnap the
\ HTMI Rendered Child
1 Window and Event Loops
and Place Within The New

Window
216 ¥
\‘ Blit the Page 1o Rendering
Context Created by Engine
218 7
\ Browser Buttons, Address Bar and Frame

Represented As Sprites or Rendered 3D
Objects and Composited with Rendered
HTML Contents of the Page

0 Y
Create Callbacks for Rendered Flements So That
They Send Commands to the Captured Browser
Window or the HTML Rendering Context Created
& Perform Expected Browser Navigation Fanctions

222 Y
\ Handle Events For
- the Caprured PR
HTML page Flg Dg,B

Does the User Navigate
to Another URE Outside
Context Defined for
Browser Skin?

YesY,

Resize Original, Hidden Browser Window to Bounds of
New, Skinned Browser Window, Make Original Browser
Window Visible & Swap with New, Skinned Browser

U.S. Patent Mar. 1, 2016 Sheet 6 of 9 US 9,276,990 B1

: 302
Receive Message /
o . ,,//
that Includes Link
to Engine Content
Execute Appropriate /

Client Application | 7
Upon Activation of the
Link
306]
‘\\\ Transmit HTTP
- Request to Node
Idertified in the Link

¥

o Receive and
----- Process HITP
Response

Activate |

Engine
2 9]
32 314

: - , 318

Download and o Can Engine . Find Node to /)
Instail Engine Stub pee=—s_ Stub Be et Yirtaally Host
and Components ™ Tostalled? ’ Applicadon

/

|
31

T

<3

&

U.S. Patent

Mar. 1, 2016 Sheet 7 of 9 US 9,276,990 B1

352
“ae__} Receive Host
Request

Transmit
Rejectio
Respounse

Accept ~
" Request? o

LA
[

Yes |

Launch Identified Application
{optionally as Hidden Process) and
Capture Output to Off-Screen Buffer
or as Kidnapped Window, Transmit
Ougput to Remote Client

.
N

Convert Local //
Fvent and Write -
to Process

i
364
Convert Remote ,//i
Remote Event g VH g L
>3 Bvents and Whiite
Message? ‘ .
< to Process

\\‘ Recetve Ourput

from Process

Fig. 4

Srate Change
Detected?

Translate State Changes
and Fventsto

Appropriare Format for
Remore Client

372 ¥

Transmit Message

to Remote Client

US 9,276,990 B1

Sheet 8 of 9

Mar. 1, 2016

U.S. Patent

¢ 81

008

1 suoqon (] SUNEog Beiog ssepy L
\\ ! \\\.; PUE pIeogAzy A N
9738 . 228 A A o
¥ k4
H0E sng O/ prepuels
) . _
¥ | _
wway | | Awouspy Lromispg Bprag
\\ sy [1 oopip / UISAG .// sng O/ .i//
918 @ A os w 18 A ¢t
. A ’ A
TIY sng /] 3renriopng yiy
Yt @
\
pa— Jpug 304
eV REL|
\ - UOREORIMIHOT Eligy
\ FTIDAMTIN
¥8 /
~
£08 \\\z TOSSIMI]
708

U.S. Patent Mar. 1, 2016

Fle Bk Yies Favorkes Took Hep

Sheet 9 of 9 US 9,276,990 B1

'} aps v otoy . comfgamesminsaneenen

Liearch Wy

-

US 9,276,990 B1

1
VIRTUAL APPLICATION EXECUTION
SYSTEM AND METHOD

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation application of
U.S. patent application Ser. No. 11/166,663 now U.S. Pat. No.
7,950,026 with an issue date of May 24, 2011, and entitled
“Virtual Application Execution System and Method,” which
claims priority from U.S. Provisional Patent Application Ser.
No. 60/583,182 filed Jun. 24, 2004, which is incorporated
herein by reference for all purposes.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclosure
as it appears in the Patent and Trademark Office patent file or
records, but otherwise reserves all copyright rights whatso-
ever.

TECHNICAL FIELD OF THE INVENTION

The present invention relates to computer software and,
more particularly to methods, apparatuses and systems
directed to virtual execution environments for software appli-
cations.

BACKGROUND OF THE INVENTION

The emergence of distributed computing environments and
associated technologies, such as web services, wireless net-
works, and the like poses a genuine challenge to the tradi-
tional deployment of software applications. What is missing
between the two poles of locally-deployed, compiled appli-
cations and distributed applications operating over a network
has been a cohesive framework that allows developers to
deploy software applications with the complexity and rich-
ness of compiled executables, while retaining the platform
independence and thinness of content and applications for
web browsers or other thin hosting environments.

SUMMARY OF THE INVENTION

The present invention provides methods, apparatuses and
systems directed, in one implementation, to a virtual execu-
tion environment for software applications and other code
objects or data blocks. In one implementation, the present
invention allows for virtual execution of applications by
transparently capturing the rendered output of natively
executed applications, and delivering the output to other pro-
cesses on the same platform or to remote devices in a platform
agnostic manner. The present invention allows for an unprec-
edented mixing of thin applications in a distributed comput-
ing environment, such as a peer-to-peer system, with a rich
API that makes no differentiation between the client and
server nodes and has no dependency on the underlying oper-
ating system. Implementations of the present invention
bridge the power of compiled applications with the thinness
of web media. In some implementations, the present inven-
tion allows for the ability to run content as meta-applications
on devices without the runtime engine being present locally
on the client device. The present invention, in one implemen-
tation, also features mechanisms that facilitate the dissemi-

10

15

20

25

30

35

40

45

50

55

60

65

2

nation, across one or more remote hosts, of runtime engine
code that incorporate the functionality described herein. The
present invention can be applied in a variety of contexts
including interactive systems-such as, computer gaming sys-
tems, three-dimensional graphical user interfaces, messaging
systems, etc.—or passive systems, such as multi-media pre-
sentations, animations, and the like. The present invention
also has application to stand-alone computing devices, or
networked computing systems. These and other objects of the
present invention will become apparent from the drawings
and following description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 comprising FIGS. 1A, 1B & 1C is a flow chart
diagram setting forth a method, according to one implemen-
tation of the present invention, directed to the hosting of an
executable or native application within the context of a
browser or any other application that can render web media.

FIG. 2 comprising FIGS. 2A and 2B is a flow chart diagram
showing a method, according to one implementation of the
present invention, directed to the skinning of browsers cus-
tomized to one or more URLs.

FIG. 3 is aflow chart diagram showing the dissemination of
aruntime stub, according to an implementation of the present
invention.

FIG. 4 is a flow chart diagram showing the initiation of a
shared, virtual hosting session between a runtime engine and
a thin client.

FIG. 5 is a functional block diagram setting forth one
possible system architecture for a general purpose computer
on which embodiments of the present invention maybe
executed.

FIG. 6 is graphical user interface of a browser that includes
the captured output of an application rendered therein.

DESCRIPTION OF PREFERRED
EMBODIMENTS

As described herein, the virtual application execution sys-
tem can be configured to accomplish a variety of functions
and can operate as an independent process or within the
context of myriad applications, such as games, browser cli-
ents, instant messaging clients, email clients, and the like. In
one implementation, the virtual application execution system
is a software application executed on a general-purpose com-
puter. The virtual application execution system may be imple-
mented in a variety of forms. For example, it may be distrib-
uted as a stand-alone application, or as a plug-in to another
application, such as a browser, email, or instant messaging
client. In addition, the software may be distributed as a down-
load or on a computer readable medium, such as a CD, or
DVD. The virtual application execution system functionality
according to the present invention can be incorporated into,
and/or operate with, a variety of computing platforms, such as
game boxes, handheld devices, and the like.

In one implementation, the virtual application execution
system is a software engine, embodied in a runtime library
built using C/C++ and assembly language. Of course, other
programming languages can be used. The virtual application
execution engine can be distributed as a plug-in—such as a
browser or IM client plug-in—, or as an independent execut-
able. In one implementation, the virtual application execution
engine comprises a virtual machine that interprets scripts,
uses its own virtual desktop and file system (which can wrap
around local native file streams or raw socket connections)
and includes a rendering engine that performs all rasterization

US 9,276,990 B1

3

(and in some embodiments, encryption and compression). As
discussed in more detail below, the virtual application execu-
tion engine may also include other functionality, such as
HTTP or web server functionality, instant message (IM) func-
tionality and the like.

In one implementation, when content intended for the vir-
tual application execution engine is selected, such as when a
user clicks on a link to the content in a web page, the virtual
application execution engine, if not already installed on the
system, installs itself through a stub mechanism. The runtime
stub manages all platform specific calls made by the runtime
engine. In one implementation, the remainder of the virtual
application execution engine, above the stub layer, is self-
contained and portable across a variety of platforms. In one
implementation, the runtime stub is installed from a URL (in
a web page, email, document, or instant message) that refer-
ences runtime content. The stub can be distributed in a variety
of'forms, such as a web browser plug-in, an executable, media
codec, QuickTime plug-in, Netscape plug-in, ActiveX con-
trol, Shockwave Xtra, etc. In one implementation, the runtime
stub is operative to check the digital signatures for all remain-
ing runtime libraries and components that it loads.

As described herein, the virtual application execution
engine allows for virtual execution of applications by trans-
parently launching and capturing the rendered output of
natively executed applications, and delivering the output to
other processes on the same platform or to remote devices in
a platform agnostic manner (such as through an HTTP
stream). For example, the virtual application execution
engine can be configured to launch an executable within the
context of an operating system platform and render the output
to a browser client executed on the same platform. In one
implementation, the output can be rendered to allow the user
to interact with the virtually executed application within the
context of the browser client as if it were a native embeddable
object within a web page. In another implementation, the
virtual application execution engine can be configured to
dynamically re-skin a browser client in response to a selected
uniform resource locator (URL). In yet another embodiment,
in one implementation, the virtual application execution
engine, when executed on a computing device, can be a node
in a distributed computing environment, such as a peer-to-
peer network, which can be used for data or file sharing, and
virtual hosting of applications for thin clients that do not have
the runtime or other functionality to execute a desired appli-
cation.

The virtual application execution engine, in one implemen-
tation, can operate in two modes depending on the nature of
the application to be executed. For example, the virtual appli-
cation execution engine can operate on an application pack-
age comprising, the binary executable corresponding to an
application, and a script (executed by the virtual machine of
the virtual application execution engine) defining the instruc-
tions for launching the binary executable. In such an imple-
mentation, the virtual application execution engine silently
launches the binary executable as a native process, captures
the output and input channels to the binary executable, and
renders and directs the output of the executable as desired. In
a second mode, the application to be executed supports
Microsoft’s COM or other suitable interface. In this second
mode, the virtual application execution engine launches the
application as a COM process, captures the rendered output
of the COM process, and directs the rendered output as
desired.

10

15

20

25

30

35

40

45

50

55

60

65

4

A. Virtual Execution of Software Applications or Executable
Objects

As discussed herein, executables (*.exe) or other native
application files and code objects can be launched into a
process controlled by the virtual application execution
engine, and appear directly within a window corresponding to
the engine, or routed into another application, such as a frame
within a web page. For example, implementations of the
present invention can be configured to achieve the result
illustrated in FIG. 6. That is, the hosting of an executable
within the context of a browser window. The virtual applica-
tion execution engine, in one implementation, can capture a
binary stream characterizing the display output of an execut-
able and re-route it. For example, the virtual application
execution engine can unpack an application, and launch the
executable silently, kidnapping its output for the above use
using the method shown in the code set forth below.

In implementations, where the virtual application execu-
tion engine is implemented as a browser plug-in, native appli-
cations can be executed within the context of a browser. As
FIG. 1 (comprising FIGS. 1A, 1B & 1C) illustrates, local
execution of a native application within the context of a
browser can be triggered by a web page including standard
objects or embedded tags (102). In one implementation, the
HTML tags set the bounds of the executable to be embedded
in the HTML page (104). As FIG. 1 illustrates, the HTML
parameters of the page may also specify the name of the
executable to load and the URL of a binary manifest file
(106). If the executable is stored locally on the computing
system (108), the virtual application execution engine can
authenticate the executable and libraries by comparing cor-
responding file signatures with a server-side registry of autho-
rized applications (110). In one implementation, the virtual
application execution engine authenticates the executable by
matching one or more digital signatures in the manifest file
with a trusted root authority (112).

If the executable is not stored locally, the virtual applica-
tion execution engine pulls, from the manifest file, the URLs
for the packaged files contain the executable and all depen-
dent components (114), and downloads all necessary packed
files in a background thread (116). As FIG. 1 illustrates, the
virtual application execution engine then authenticates the
file signatures of the downloaded files using a trusted server
or digital certificate(s) signed by a trusted root authority
(118). If the files are not authenticated (120), the virtual
application execution engine displays a warning dialog box,
and can optionally suppress the, launch of the application.
Otherwise, the virtual application execution engine places the
files into a local sub-folder (122), and uses the manifest file or
information in the package headers to build and populate
sub-folders need by the executable, as well as modifying the
system registry if necessary (124).

After authentication of the files, the virtual application
execution engine launches the executable in a silent process
within the context of the native operating system (126). In
many operating systems (such as Microsoft Windows®), a
variety of objects are created to support the launched process,
such as a parent or root window (identified by a window
handle), as well as window event loops or processes that scan
for user inputs (e.g., key strokes, mouse inputs, etc.) intended
for the process. Together, the window and corresponding
event loops are the input/output interface to the launched
process. In one implementation, the process is operative to
render a display output as a binary data stream and provides
the rendered output to the window created for it by the oper-
ating system. As described herein, the virtual application
execution engine, in one implementation, intercepts the chan-

US 9,276,990 B1

5

nel between these interfaces and the underlying process to
virtually execute the subject executable within other contexts,
such as within a browser client. In one implementation, the
virtual application execution engine launches the process off
the edge of the display area with no visible task bar, window
or icon visible to the user. The virtual application execution
engine then scans the system windows of the native operating
system in a threaded loop as the executable code object is
launched (128). During this loop, the virtual application
execution engine tests each window on the operating system
for an expected window name and a known process identifier
returned by the operating system when the process was
launched (130). As FIG. 1 illustrates, if the virtual application
execution engine finds a window that matches these two
criteria and is a root application window (132), it turns the
window invisible to the user and stores the window handle
corresponding to the window (134). Additional or alternative
criteria that can be used to identify the window corresponding
to the silently launched process include thread handles, mod-
ule names, class names, and the like. In one implementation,
the virtual application execution engine changes at least one
window property (e.g., the procedure pointer in Microsoft
OSs) created by the operating system when launching the
process that allows the virtual application execution engine to
capture the rendered output of the process and divert it as
desired, such as rendering it to an off-screen buffer. For
example, in Microsoft platforms, the virtual application
execution engine changes the procedure pointer of the cap-
tured process from the window handle assigned by the oper-
ating system to another procedure pointer created by the
virtual application execution engine to allow the virtual appli-
cation execution engine to control, render and process events
for the captured application. As FIG. 1 further illustrates, the
virtual application execution engine, in one implementation,
transforms the launched process’ window into a borderless
window and hooks into, or sub-classes, the window event
loop (136) in order to intercept, as well as write, key strokes,
mouse clicks and other inputs intended for the process. The
source code set forth at the end of this description and before
the claims illustrates how the virtual application execution
engine launches an executable and scans for a corresponding
window created by the underlying operating system.

As FIG. 1 shows, the virtual application execution engine
processes the manifest file for scripts and code that may
override the default behavior of the executable parent window
originally created by the operating system and hidden by the
virtual application execution engine (138). For example, the
virtual application execution engine, consulting a script, can
change the dimensions of the window created by the virtual
application execution engine, background colors, scroll bars,
etc. In one implementation, the virtual application execution
engine checks the manifest to determine if the executable can
properly render to an off-screen memory buffer, or if the
executable was launched in a virtual off-screen desktop or in
the context of a hidden display device (140). If the executable
can render to an off-screen buffer (142), the virtual applica-
tion execution engine renders and manages the executable’s
off-screen desktop shell or draws its context and rasterizes it
into an off-screen buffer (146). Otherwise, the virtual appli-
cation execution engine removes the border of the root
executable window of the captured process and inserts it as a
child window within another window managed by the virtual
application execution engine (144). As FI1G. 1 also illustrates,
the virtual application execution engine uses the sub-classed
event loop to propagate user interaction to the native process
corresponding to the executable (148). That is, the virtual
application execution engine receives user interaction (e.g.,

20

30

40

45

6

mouse clicks, key strokes, etc.) within the context of its win-
dow event loops, translates the event data as required (e.g.,
converting from 3D to 2D space, etc.), and writes it to the
event loops of the process launched for the hosted executable.
The virtual application execution engine then renders the
embedded executable child window within a surface or sprite
layer of the rendering context of the virtual application execu-
tion engine (150). For example, in one implementation, the
resulting rendered output stored in the off-screen memory
buffer, or the output rendered into the child window, is placed
inside the context of a browser application, or any other
application that processed and launched the URL. The sub-
classed (captured) process can then digest the user interac-
tion, the results of which the virtual application execution
engine captures and renders within a destination display con-
text such as a browser client window. Finally, when the plug-
in is unloaded, the virtual application execution engine ter-
minates the hosted executable process before the plug-in
window is destroyed.

As discussed above, other implementations are possible.
For example, if the executable supports a COM or other
suitable interface, the virtual application execution engine
looks for a COM interface supported by the executable, and
accesses the executable through its COM interface to poten-
tially access additional information or other functionality not
available through the normal event message pipeline. For
example, the virtual application execution engine can query
the COM interface of a process to determine whether the
COM interface can be used to render the output of the process
to an off-screen buffer, get and receive event messages, and
the like. The virtual application execution engine, depending
on the properties of the COM process, can then capture its
output, in a manner similar to that discussed above, and direct
the output as desired. Similar to the foregoing, the resulting
output rendered by the executable, in one implementation, is
diverted into an off-screen buffer and eventually blitted into
the rendering context of the virtual application execution
engine. Of course, other application interfaces for external
processes can be used, such as Java interfaces, .NET inter-
faces, Applescript interfaces, and the like.

B. Web Browser Skinning

In one implementation, the present invention facilitates the
skinning of browsers in a manner specifically configured or
customized by a given web site. For example, Netscape used
to give away themed browsers, having a customized skin, to
promote a particular movie. The present invention takes this a
step further, by automatically re-skinning the browser when a
URL with HTML containing skin tags (or a URL matching a
predetermined domain) is loaded (either through a link, or by
typing the URL into the browser address bar). Further, when
the URL is exited, the virtual application execution engine
restores the normal skin of the browser, and can maintain
different skins for each browser instance. On Microsoft Win-
dows® platforms, the virtual application execution engine
can use COM event sinks, or other external connections, in
Internet Explorer® (IE) to capture the window handle of the
browser, and pull the inner HTML control from the IE win-
dow, and place it in a new window with the same dimensions
as the normal browser using the URL’s skinning information.
The original browser window is hidden until the page is
exited, at which point the inverse of the above is performed,
with the HTML browser control being swapped back into the
original frame. The virtual application execution engine can
also leave the existing browser page alone and achieve a cross
fade or animated transition to the themed browser skin by
taking a snapshot image of the browser window, launching a
completely new window with this image over the browser and

US 9,276,990 B1

7

then hiding the browser window. Since the browser’s display
is being pulled from an image map maintained by the virtual
application execution engine, already skinned and framed,
the rendered HTML control can directly be blended into the
image map, creating a seamless transition from the normal as
browser to the themed variation rendered by the virtual appli-
cation execution engine. Furthermore, the virtual application
execution engine automatically propagates these enhance-
ments (as plug-ins) within the client web browser, allowing
the browser to 1) transparently host clipped executables
(above) in a web page (as if they were a native browser
plug-in), and 2) re-skin the browser’s borders, icons and
buttons based on the currently viewed URL.

FIG. 2 illustrates a method directed to skinning a browser
with custom content as implemented by a browser plug-in
that is triggered by an embedded tag or other object in an
HTML page. As FIG. 2 illustrates, the browser itself can
launch the plug-in virtual application execution engine upon
detection of an embedded tag or component inan HTML page
(203). Alternatively, the virtual application execution engine
can already be installed and running as a background process
that connects to system-wide browser COM or DOM (Docu-
ment Object Model) events to determine whether to launch
the browser skinning functionality described herein based on
the URL currently loaded by any of the foregoing browser
instances (202). In this mode of implementation, the virtual
application execution engine, in one implementation, deter-
mines whether the URL, loaded by any current browser
instance, matches an entry in a registry, which may be hosted
by aremote server or stored locally (204). If a match is found,
the virtual application execution engine launches the func-
tionality described herein.

In one implementation, the virtual application execution
engine moves the existing browser window in front of all
other windows, if necessary, and captures its screen contents
in an off-screen buffer (206). The virtual application execu-
tion engine then creates a new window (in one implementa-
tion, with no taskbar component), that matches the dimen-
sions and contents of the original browser window and
displays it over the bounds of the original browser window
(208). The virtual application execution engine, in one imple-
mentation, hides the original browser window and taskbar
icon as the new window is seamlessly swapped for it and
becomes visible (210).

The virtual application execution engine, in one implemen-
tation, creates a child as window within the rendering context
of the virtual application execution engine using standard
system calls, or calls to an HTML rendering library that draws
the target web page contents to an off-screen buffer (212). As
discussed above, the virtual application execution engine
may also use hidden display or virtual desktop graphics con-
texts to achieve the effect of rendering the web page to an
off-screen buffer. Of course, other graphics contexts con-
trolled or controllable by the virtual application execution
engine can be used. The virtual application execution engine
then subclasses and kidnaps the HTML-rendered child win-
dow and renders it within the newly created window managed
by the virtual application execution engine (214). In another
implementation, subclassing of the event and message loops
can be replaced or enhanced, if the browser supports a COM
or similar external application interface. The virtual applica-
tion execution engine, if the target web page is rendered to an
off-screen buffer, then blits the rendered page from the oft-
screen buffer to the rendering context created by the virtual
application execution engine (216). If the rendered target
page is placed in a virtual desktop graphics context, the vir-
tual application execution engine can either blit the target

10

15

20

25

30

35

40

45

50

55

60

65

8

page directly from the virtual graphics context, or copy the
target web page into the off-screen buffer, and then blit the
page to the rendering context of the virtual application execu-
tion engine. For example, the virtual application execution
engine may include a 3-dimensional rendering engine. In
such an embodiment, the rendered page may be converted to
a composited texture map and rendered on the surface of a
desired 3-dimensional object. In another implementation, the
page may be simply blitted into a 2-dimensional area sur-
rounded by the skinned browser components created by the
virtual application execution engine. As FIG. 2B illustrates,
the virtual application execution engine then renders the
browser buttons, address bar, and frame and composites them
with the rendered HTML contents of the page (218). To
properly handle events, the virtual application execution
engine creates and handles callbacks from the rendered ele-
ments of the page so that commands can be sent to the cap-
tured browser window or HTML rendering context, and per-
forms browser navigation functions as a user clicks within the
window or other context presented by the virtual application
execution engine (220). As FIG. 2B shows, the virtual appli-
cation execution engine handles events such as mouse clicks
and keyboard strokes (222) in this manner until the user
navigates to a URL that is outside the context defined for the
browser skin (224). After the user navigates outside this con-
text (which can be specified in a script) or the URL domain
used to load the skin, the virtual application execution engine
resizes the original, hidden browser window to the bounds of
the skinned browser window and makes the original browser
window visible, swapping it with the skinned browser win-
dow (226).

C. Shared Windows and Remote Application Hosting

In one implementation, elements maintained and rendered
by the virtual application execution engine on a local client
can be transmitted and rendered remotely onto other clients.
This functionality can be used to accomplish a variety of
objectives, such as remote application hosting and/or shared
window sessions. Shared windows and remote application
hosting can be accomplished in two different manners. For
example, an instant messaging, chat, or email message can be
used to virally disseminate the virtual application execution
engine stub to a remote client. That is, as discussed below, in
one implementation, the virtual application execution engine
can install its runtime on the remote host, and use it to estab-
lish a window for the shared application on the remote host. In
another implementation, each virtual application execution
engine runtime; when executed on a computing device, can
become a node in a peer-to-peer network, which can be used
for data or file sharing, and virtual hosting of applications for
thin clients that do not have the runtime or other functionality
to execute a desired application. Accordingly, through a stan-
dard TCP/IP or other network protocol connection, two or
more nodes can be linked to a shared virtual window, with
each node viewing and interacting through a local viewport to
the shared window space or context.

FIG. 3 illustrates a process flow implemented on a remote
client in response to a message that includes a link to content
corresponding to the virtual application execution engine. For
example, using an IM gateway (such as a TOC session socket
connection, SMS messaging system, or server IM proxy)
built into the virtual application execution engine, a user may
send a single URL link (or other reference trigger) to the
remote client in a message. When the remote client receives
the message (302), the user may activate the link (304), caus-
ing the remote client to launch an appropriate client applica-
tion, such as a web browser, microbrowser, etc., which trans-
mits a request to the node identified in the link (306). The

US 9,276,990 B1

9

target node may be a server or node different/remote from the
virtual application execution engine that originally sent the
link, or may be the same (originating) node that originally
sent the link. In either implementation, the sent link is inter-
preted by an automated web server or other server node in the
network, when the remote client clicks on it. The server node,
which receives the request, generates an HTTP (or other
device agnostic) response and sends it to the remote client. In
one implementation, the HITTP or other response comprises
an HTML stream that includes a script with logic triggers
executed by the remote client that conditionally launch vari-
ous process flows based on the presence of a virtual applica-
tion execution engine on the remote client and/or the ability to
install an engine stub on the remote client.

As FIG. 3 illustrates, when the remote client receives and
processes the HTTP response (308), the script (or other code
object) in the response first checks for the presence ofa virtual
application execution engine installed on the remote client
(310). If the virtual application execution engine is present,
the script activates the virtual application execution engine on
the remote client (312), which then operates in a similar
manner as that discussed above. For example, the virtual
application execution engine may launch as a browser plug-in
on the remote client, consult a .script and install an executable
code object embedded in the HTTP response (see above). In
addition, a shared window or session may be established, as
described in more detail below, where the virtual application
execution engine on the remote client and the originating host
synchronize the events at each node in the shared session. If
the virtual application execution engine is not installed on the
remote client, however, the script in the HTML received by
the remote client first attempts to download and install an
engine which transparently installs the virtual application
execution engine runtime (316) and uses the generated
HTML parameters passed to the browser plug-in (or other
interface to the engine on the client) to host an executable
code object and/or establish a shared window between each
client. In one implementation, the runtime install can occur
with just a few clicks from the remote user, even if it does not
yet have the virtual application execution engine installed
before a first connection is established. This allows the viral
dissemination of both the virtual application execution
engine runtime code and its managed content with almost no
installation or action required on the part of the remote user
(e.g., one to click on the link sent in an IM, the other to accept
the installation of the apparatus’ browser plug-in, which can
take the form of a stub ActiveX control on ape, or a Quick-
Time component or Shockwave Xtra on the Mac).

Assuming that the originating node and the remote client
both have runtime engines installed, the shared window ses-
sion processes, such as event and rendering synchronization,
is greatly facilitated and can be implemented using standard
technologies, such as technologies in the network gaming
environment. For example, the remote client and originating
host can send smaller representations of complex structures,
such as the drawing context or transforms of objects or state
rendering changes. For example, one node may simply send
position or vector data for a given 3-dimensional object as
opposed to having to send information encapsulating the
entire rasterization of the object on the local client.

As FIG. 3 illustrates, if the remote client does not support
the engine stub (314), the script or other parameters in the
HTTP response attempts to find a node in the network envi-
ronment, such as the originating node, that can virtually host
the application and/or shared window session (318). In
another implementation, however, the remote client may rely
on functionality native to the original server’s network envi-

20

40

45

50

60

10

ronment itself, such as a peer-to-peer network to identify a
node that can host the application or shared window session.
In one implementation, this functionality could be triggered
by a timeout at the remote client, after the application failed to
execute within a threshold period of time.

As discussed above, the virtual application execution
engine can also operate to virtually host an application and/or
establish a shared window (in one implementation, rendered
as an HTML page, including image maps, Javascript events
and triggers, etc.) with thin clients that cannot support the
engine runtime stub. To support shared window sessions, the
virtual application execution engine can translate application
events and logic, local to the hosting node, into an HTTP
stream destined for the remote client. User interaction (such
as Javascript events, image map events, and changes to text
fields) at the remote client are transmitted back to the virtual
application execution engine on the hosting node (in one
implementation, through HTTP streams), and translated into
local events and written to the event loop(s) of the shared
process(es). In addition, some events on the remote client can
be generated by the Javascript or other code in the HTTP
stream, such as automatic refreshing of pages, timeouts,
mouse events, keyboard events, etc. Translation of the local
events into HTTP streams, for example, essentially results in
abstraction of these events that can be configured to achieve a
variety of features and objectives. For example, an input
device (e.g., a joystick, keyboard or other 1/O device)
expected by the process (executed on the hosting node) that
does not physically exist on the remote client can be never-
theless simulated. For example, the virtual application execu-
tion engine can convert image map inputs from the remote
client in a response HT'TPstream to equivalent joystick or
keyboard input and write or transmit the converted inputs to
the process executed on the hosting node. The virtual appli-
cation execution engine can also convert any static or editable
content in the hosted process (e.g., text, fields, sprites, arrays,
labels, buttons, etc.) into equivalent HTML structures (e.g.,
tables, HTML layers, tagged objects, canvases, scripts, and
Java applets) for transmission to, as well as consumption and
synchronization by, the remote client. In one implementation,
however, the virtual application execution engine can simply
transmit non-interactive images (such as JPEGs and GIFs) of
the rasterized application context on the host.

For example, a cell phone running a microbrowser client
can connect to another node that includes a virtual application
execution engine runtime and a word processing or spread-
sheet application. The virtual application execution engine
runtime can create an interface to a document with full event
synchronization that works with the microbrowser on the cell
phone and transmit it to the cell phone. For example, the
virtual application execution engine can be used to host a
spreadsheet program (with support for COM or other external
application interfaces), as described above, capture the ren-
dered output of the spreadsheet program, and create a page
including the rendered output as an HTML table thathas been
translated from accessing the column and row properties of
the spreadsheet through its COM or other external interface.
A link to the page can then be transmitted to the cell phone in
an instant message. The virtual application execution engine
includes HTTP hosting and/or other server functionality that
translates/transcodes and serves the page to the cell phone
when the link is activated. User interaction on the cell phone
is transmitted to the virtual application execution engine
server in a manner similar to normal HTTP sessions. The
virtual application execution engine receives the input and
translates it to a standard windows event and writes it to the
event loop of the local process corresponding to the spread-

US 9,276,990 B1

11

sheet. The resulting output can be rendered on the local node,
as well as transmitted to the cell phone’s microbrowser.
Accordingly, the virtual application execution engine, in
effect, translates the output of a locally executed process,
such as a graphics context, events, etc. into an HTML over
HTTP stream. In addition, the remote user’s input is trans-
mitted back to the virtual application execution engine as
HTTP messages. For example, in one implementation, the
resulting rendered output stored in the off-screen memory
buffer may be converted into a JPEG, GIF or other suitable
image file and displayed within the context of a remote client.
In another implementation, the rendered output can be con-
verted into an image map (or editable HTML field or table)
and displayed within the context of a remote browser: The
virtual application execution engine can also convert the
mouse clicks on the image map (or edits to input, fields or
table objects) to corresponding events and write them to the
event loop corresponding to the host process implementing
the executable. The host process can then digest the user
interaction, the results of which the virtual application execu-
tion engine captures, renders and transmits to the remote
client.

FIG. 4 illustrates a process, according to one implementa-
tion of the present invention, executed by a hosting node in the
situation where a remote client does not have an installed
virtual application execution engine, and a shared window
session is desired. In one implementation, the hosting node
receives a host request (352), and decides whether to accept
the request (354). In one implementation, the hosting request
identifies the application or code object to be executed and the
remote client(s). The remote client may be identified based on
anetwork address, a hostname or any other suitable identifier.
In addition, a variety of factors can be used in this determi-
nation, such as whether the instant host initiated the exchange
with the remote client, the load on the instant host, etc. If the
host accepts the request, the virtual application execution
engine on the host launches the identified application as a
local process within the context of its operating system, and
captures the output of process, as discussed above, to an
off-screen buffer or in a kidnapped child window (whether
visible or invisible) (356). As FIG. 4 shows, the virtual appli-
cation execution engine on the hosting node also transmits the
resulting output to the remote client identified in the hosting
request.

As FIG. 4 illustrates, the virtual application execution
engine on the hosting node checks for local events (such as
mouse clicks, keyboard strokes, joystick movements, etc.)
(358), converts the local events (as discussed above) and
writes the events to the captured process (360). In addition,
the virtual application execution engine also scans for remote
event messages transmitted by the remote client(s) (362). As
discussed in more detail below, the user on the remote client
may interact with the output displayed at the remote client.
These interactions—which also can be mouse clicks, key-
board strokes, and the like—are transmitted in messages,
such as HTTP streams. The virtual application execution
engine on the hosting node receives the event message on a
socket or other connection mechanism, converts the remote
events as appropriate for the native, captured process, and
writes them to the captured process (364). After the virtual
application execution engine receives the resulting output of
the process (366), it determines whether any state changes
occurred (368). If so, the virtual application execution engine
on the hosting node translates the state changes and events to
a format appropriate to the remote client (370), and transmits
a message to the remote client (372). The message contents
can vary significantly depending on the changes, the

10

15

20

25

30

35

40

45

50

55

60

65

12

attributes of the hosted application, and/or the attributes of the
remote client or client application. For example, the message
contents may be include instructions describing the changes
themselves, or may be an entirely re-rendered image file or
map. Given the foregoing, if the hosting node is selected
solely to host the application for the remote client (and no
shared window session is desired), the virtual application
execution engine omits the steps directed to checking for
local events.

To facilitate initiation of a shared window session, in one
implementation, the virtual application execution engine
allows users to sign into their IM account (using public IM
protocols like TOC, or a server based IM gateway for pro-
tected protocols), subsequently creating an object on the
screen for each contact on the users’ buddy lists, or generate
a unique 1D for the user (for use in a peer-to-peer or other
network structure) from one or more hardware identifiers on
the local system, such as hard disk drive or CPU serial num-
bers. A given buddy object represents a remote client, and
when connected to a virtual application execution engine
process or window by a user (such as dragging a buddy icon
into a window or surface), makes the object’s process, logic
and/or window shared between the local virtual application
execution engine and the remote client (spawning a new
window on the remote client if the shared content or process
is not already attached to a window or object on the remote
client’s machine).

D. Exemplary Computing Platform

Still further, in the embodiments described above, the
present invention is executed within the context of a software
application installed on a general purpose computer. FIG. 5
illustrates, for didactic purposes, the system architecture of a
general purpose computer according to one implementation
of'the present invention. The present invention, however; can
be implemented on a wide variety of computer system archi-
tectures. In one embodiment, the above-described system
architecture operates in connection with computer hardware
system 800 of FIG. 5. An operating system manages and
controls the operation of system 800, including the input and
output of data to and from the location diagram editing appli-
cation, as well as other software applications (not shown).
The operating system provides an interface, such as a graphi-
cal user interface (GUI), between the user and the software
applications being executed on the system. According to one
embodiment of the present invention, the operating system is
the Windows® 95/98/NT/XP operating system, available
from Microsoft Corporation of Redmond, Wash. However,
the present invention may be used with other conventional
operating systems, such as the Apple Macintosh Operating
System, available from Apple Computer Inc. of Cupertino,
Calif., UNIX operating systems, LINUX operating systems,
and the like.

FIG. 5 illustrates one embodiment of a computer hardware
system suitable for use with the present invention. In the
illustrated embodiment, hardware system 800 includes pro-
cessor 802 and cache memory 804 coupled to each other as
shown. Additionally, hardware system 800 includes high per-
formance input/output (I/0) bus 806 and standard I/O bus
808. Host bridge 810 couples processor 802 to high perfor-
mance 1/O bus 806, whereas 1/O bus bridge 812 couples the
two buses 806 and 808 to each other. Coupled to bus 806 are
network/communication interface 824, system memory 814,
and video memory 816. In turn, display device 818 is coupled
to video memory 816. Coupled to bus 808 are mass storage
820, keyboard and pointing device 822, and /O ports 826.
Collectively, these elements are intended to represent a broad
category of computer hardware systems, including but not

US 9,276,990 B1

13

limited to general purpose computer systems based on the
Pentium® processor manufactured by Intel Corporation of
Santa Clara, Calif., as well as any other suitable processor.

The elements of computer hardware system 800 perform
their conventional functions known in the art. In particular,
network/communication interface 824 is used to provide
communication between system 800 and any of a wide range
of conventional networks, such as an Ethernet network, a
wireless (e.g., IEEE 802.11) network, etc. Mass storage 820 is
used to provide permanent storage for the data and program-
ming instructions to perform the above described functions
(implemented in the system controller, whereas system
memory 814 (e.g., DRAM) is used to provide temporary
storage for the data and programming instructions when
executed by processor 802. /O ports 826 are one or more
serial and/or parallel communication ports used to provide
communication between additional peripheral devices which
may be coupled to hardware system 800.

Hardware system 800 may include a variety of system
architectures and various components of hardware system
800 may be rearranged. For example, cache 804 may be
on-chip with processor 802. Alternatively, cache 804 and
processor 802 may be packed together as a “processor mod-
ule”, with processor 802 being referred to as the “processor
core”. Furthermore, certain implementations of the present
invention may not require nor Include all of the above com-
ponents. For example, the peripheral devices shown coupled
to standard I/O bus 808 may be coupled to high performance
1/0 bus 806; in addition, in some implementations only a
single bus may exist with the components of hardware system
800 being coupled to the single bus. Furthermore, additional
components may be included in system 800, such as addi-
tional processors, storage devices, or memories.

In one embodiment, the operations of the location diagram
editing application are implemented as a series of software
routines run by hardware system 800 of FIG. 5. These soft-
ware routines comprise a plurality or series of instructions to
be executed by a processor in a hardware system, such as
processor 802. Initially, the series of instructions are stored on
a storage device, such as mass storage 820. However, the
series of instructions can be stored on any conventional stor-
age medium, such as a diskette, CD-ROM, ROM, etc. Fur-
thermore, the series of instructions need not be stored locally,
and could be received from a remote storage device, such as
a server on a network, via network/communication interface
824. The instructions are copied from the storage device, such
as mass storage 820, into memory 814 and then accessed and
executed by processor 802. In one implementation, these
software routines are written in the C++ programming lan-
guage and stored in compiled form on mass storage device
820. However, these routines may be implemented in any of
a wide variety of programming languages, including Visual
Basic, Java, etc. In alternate embodiments, the present inven-
tion is implemented in discrete hardware or firmware. For
example, an application specific integrated circuit (ASIC)
could be programmed with the above described functions of
the present invention.

The invention has been explained with reference to specific
embodiments. For example, the rendering engine and associ-
ated functionality can be implemented on a variety of com-
puting platforms, such as dedicated gaming devices or boxes,
handheld devices and the like. Other embodiments will be
evident to those of ordinary skill in the art. It is therefore not
intended that the invention be limited.

EXE Virtual Hosting

// return window of a specific application process, Window
container class with target process ID passed into this call-
back:

10

15

20

14

BOOL CALLBACK ScanProcessChildProc(HWND hWnd,
LPARAM 1Param

OSControl* OSW=(OSControl *)1Param;

DWORD dwProcessld;

if (!hWnd) return true;.

if (1::IsWindow(hWn)) return true;

GetWindow ThreadProcessld(hWnd, &dwProcessld);

// first check the process matches

if (OSW—=m_AppID !=dwProcessld) return true;

// second, only get the root window

if (::GetParent(hWnd)) return true;

/I third check the window
Name()length <=0:

if (strlen(OSW—=Name())>0)

title, ignoring if

char name[255];

:GetWindow Text(hWnd,name,255);

// if the name doesn’t match, then exit

if (!stremp(OSW—NameQ,name)) return true;

// native window handle stored back into the class if all
tests.pass

OSW—o0s.window=hWnd;

return true;

25}

35

40

45

55

60

65

// Create a kidnapped window from a launched process cre-
ated from the module at the specified path
EXEHost(const char *AppName,const char* CmdLine,
const char* WndName=nil))
): CustomWindowClass()
{
String WEXEAndCmdLine;
WEXEAndCmdLine=AppName;
// build path
WEXEAndCmdLine="“";// optional localfolder;
WEXEAndCmdLine+=AppName;
if (CmdLine !=nil)
{ WEXEAndCmdLine+=*";
WEXEAndCmdLine+=CmdLine;

// launch process so it is hidden, and way off screen (since
flickering may occur anyways, even if the hidden flag is true)

STARTUPINFO info;

memset(&info,0,sizeof(info));

info.cb=sizeof(info);

info.wShowWindow=SW_HIDE;

info.dwY=9000;

info.dwX=0;

info.dwFlags=STARTF_USESHOW WINDOW |START-
F_USEPOSITION;

PROCESS_INFORMATION process;
char buf]1024];

WEXEAndCmdLine.copy(buf,1024);

/! wait in loop until the window for the launched exe is
found, then immediately hide its window and reattach it else-
where including a web page frame

bool OK=
CreateProcess(0,buf,0,0,false,
DETACHED_PROCESSIINORMAL_PRIORITY_CLASS,
0,0,&info,&process);

if (OK)

PostMessage(ParentWindow /*main window of the calling
process*/, WM_NULL, 0, 0);

WaitForlnputldle(process.hProcess, INFINITE);

m_ApplD=process.dwProcessld;

os.window=nil;

US 9,276,990 B1

15
if (WndName) SetName(WndName);
else SetName(*);
while (!os.window)

EnumWindows(ScanProcessChildProc, (LPARAM) this);
PostMessage(os.window, WM_NULL, 0, 0);

}
Synch();

// window class function to set the window invisible, just in
case the CreateProcess function failed to do so, as it some-
times does depending on the environment and type of appli-

cation launched
SetVisible(false);

}

What is claimed is:
1. A method, comprising:
receiving, by an application hosting engine executing
within a computing environment comprising a proces-
sor, a memory connected to the processor and an oper-
ating system stored in the memory, a trigger to launch an
executable code object locally within a context of the
operating system;
launching, by the application hosting engine, the execut-
able code object locally as a process within the context
of the operating system, wherein the process creates a
root window locally within the context of the operating
system and renders an output to the root window;
intercepting, by the application hosting engine, the output
rendered by the process corresponding to the executable
code object, wherein intercepting the output rendered by
the process comprises:
iteratively scanning, by the application hosting engine,
in response to launching the executable code object
and as the executable code object launches, system
windows of the operating system against a set of
expected attributes to initially detect the root window,
wherein the set of expected attributes comprises one
or more of a process identifier, a window name or an
indication of a root window; and
capturing, by the application hosting engine, a binary
stream characterizing the output of the process;
generating, by the application hosting engine, a first net-
work protocol stream providing access to the intercepted
output of the process corresponding to the executable
code object; and
transmitting, by the application hosting engine, the first
network protocol stream to a remote node.
2. The method of claim 1 wherein the first network protocol
stream is an HTML over HTTP stream.
3. The method of claim 1 further comprising
receiving, by the application hosting engine, a second net-
work protocol stream from the remote node, wherein the
second network protocol stream comprises an input for
the process;
translating, by the application hosting engine, the input for
the process from the second network protocol stream to
a native input; and
writing, by the application hosting engine, the native input
to the process.
4. The method of claim 2 further comprising
receiving, by the application hosting engine, an HTTP
response to the HTML over HTTP data stream from the
remote node; and
converting, by the application hosting engine, the response
to at least one event; and

15

40

45

55

60

65

16

writing, by the application hosting engine, the at least one

event to the process.

5. The method of claim 1 wherein the executable code
object supports an external application interface, and wherein
the method further comprises accessing, by the application
hosting engine, additional functionality associated with the
executable code object through the external application inter-
face.

6. The method of claim 1 wherein the intercepting step
further comprises

changing, by the application hosting engine, at least one

attribute of the root window to intercept the rendered
output of the process.

7. The method of claim 6 wherein the changing step further
comprises

changing, by the application hosting engine, a first proce-

dure pointer assigned to the root window by the operat-
ing system to a second procedure pointer.

8. The method of claim 1, wherein the root window further
comprises an event loop, and wherein the method further
comprises

sub-classing, by the application hosting engine, the event

loop to intercept input events corresponding to the pro-
cess.

9. An apparatus for virtually executing an application,
comprising:

a processor;

a memory;

an operating system stored in the memory; and

avirtual application execution engine, physically stored in

the memory, comprising processor-executable instruc-
tions operable for:
receiving a trigger to launch an executable code object
locally within the context of the operating system;
launching the executable code object locally as a silent
process within the context of the operating system,
wherein the silent process is operative to cause a root
window to be created locally within the context of the
operating system and render an output to the root
window;
intercepting the output rendered by the process corre-
sponding to the executable code object, by
iteratively scanning, in response to launching the
executable code object and as the executable code
object launches, system windows of the operating
system against a set of expected attributes to ini-
tially detect the root window, wherein the set of
expected attributes comprises one or more of a
process identifier, a window name or an indication
of a root window; and
capturing a binary stream characterizing the output of
the process;
generating a first network protocol stream providing
access to the intercepted output of the process corre-
sponding to the executable code object; and
transmitting the first network protocol stream to a remote
node.

10. The apparatus of claim 9 further comprising a network
interface, and wherein the virtual application execution
engine comprises a server application comprising processor-
executable instructions operable for:

communicating with a remote host;

converting the rendered output to an HTML data stream

over an HTTP session; and

transmitting the HTML data stream to the remote host.

US 9,276,990 B1

17

11. The apparatus of claim 10 wherein the virtual applica-
tion execution engine further comprises processor-executable
instructions operable for:

receiving an HTTP response to the HTML data stream

from the remote host;

converting the response to at least one event; and

writing the at least one event to the process.

12. The apparatus of claim 9 wherein the virtual applica-
tion execution engine further comprises processor-executable
instructions operable for:

changing at least one attribute of the window to intercept

the rendered output of the silent process.

13. The apparatus of claim 12 wherein the instructions that
cause the processor and apparatus to execute the changing
step further comprise processor-executable instructions for
that cause the processor and the apparatus to:

changing a first procedure pointer assigned to the root

window by the operating system to a second procedure
pointer.

14. The apparatus of claim 9, wherein the root window
further comprises an event loop, and the memory comprises
further processor-executable instructions operable for sub-
classing the event loop to intercept input events correspond-
ing to the process.

15. A computer program product, physically stored on a
machine-readable non-transitory computer-readable
medium, comprising an application hosting engine for virtu-
ally executing a software application within the context of an
operating system, the application hosting engine comprising
processor-executable instructions for:

receiving, by the virtual application hosting engine, a trig-

ger to launch an executable code object locally within
the context of the operating system;

launching, by the virtual application hosting engine, the

executable code object locally as a silent process within
the context of the operating system, wherein the silent
process is operative to cause a root window to be created
locally within the context of the operating system and
render an output to the root window;

intercepting, by the virtual application hosting engine, the

output rendered by the process corresponding to the

executable code object, by

iteratively scanning, in response to launching the execut-
able code object and as the executable code object
launches, system windows of the operating system
against a set of expected attributes to initially detect
the root window, wherein the set of expected
attributes comprises one or more of a process identi-
fier, a window name or an indication of a root window;

—_
w

25

35

40

45

18
capturing, by the virtual application hosting engine, a
binary stream characterizing the output of the pro-
cess;

generating, by the virtual application hosting engine, a first

network protocol stream providing access to the inter-
cepted output of the process corresponding to the
executable code object to a first network protocol
stream; and

transmitting, by the virtual application hosting engine, the

first network protocol stream to a remote node.

16. The non-transitory computer-readable medium of
claim 15 further comprising processor-executable instruc-
tions for:

communicating, by the virtual application hosting engine,

with a remote host; and

converting, by the virtual application hosting engine, the

rendered output to an HTML data stream over an HTTP
session; and

transmitting, by the virtual application hosting engine, the

HTML data stream to the remote host.

17. The non-transitory computer-readable medium of
claim 16 wherein the virtual application execution engine
further comprises processor-executable instructions for:

receiving, by the virtual application hosting engine, an

HTTP response to the HTML data stream from the
remote host;

converting, by the virtual application hosting engine, the

response to at least one event; and

writing, by the virtual application hosting engine, the at

least one event to the process.

18. The non-transitory computer-readable medium of
claim 15 wherein the virtual application execution engine
further comprises processor-executable instructions for:

changing, by the virtual application hosting engine, at least

one attribute of the window to intercept the rendered
output of the silent process.

19. The non-transitory computer-readable medium of
claim 18 wherein the instructions operable to cause the pro-
cessor to execute the changing step further comprise proces-
sor-executable instructions for:

changing, by the virtual application hosting engine, a first

procedure pointer assigned to the root window by the
operating system to a second procedure pointer.

20. The non-transitory computer-readable medium of
claim 19, wherein the root window further comprises an event
loop, and wherein the application hosting engine comprises
processor-executable instructions for:

sub-classing, by the virtual application hosting engine, the

event loop to intercept input events corresponding to the
process.

